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Abstract. Oil and gas industry requires accurate flow measurement since they are stated by law.
Though, such industry fields usually deal with installation effects on the quality of flow profile
due to pipe connectors, for instance. Hence, flow disturbances occur and measurement accuracy
may be committed. On the other hand, single path ultrasonic flow measurement technology
depends on being installed at a tube section where fully developed flow is established. The paper
presents an evaluation of bend effects, installed upstream to the flow meter, on the correction
factor (k factor) of such devices. The flow field has been obtained via computational fluid
dynamics (CFD) and the correction factor has been calculated by numerical integration of the
velocity profile at the metering section. Typical pipe curves configuration (single bend and
double bend out-of-plane) have been considered. The k—¢ turbulence model has been used to
all simulations. Reynolds numbers from 1x10° to 2x10°, transducer installation angles of 0, 30,
45, 60 and 90° and distances of 5, 10, 15, 20, 40, 60 and 80D after curve have been tested and
previous results are graphically shown and commented.
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1 INTRODUCTION

Flow meters calibration represents an important issue to oil and gas industry, where accurate
flow measurements are required and national regulations describe the proceedings for oper-
ational and custody metering. These documents, such as AGA (2007) and ANP/INMETRO
(2000), point out ultrasonic flow meters (UFM) as a suitable technology for oil and gas me-
tering. Still, the conditions for accurate flow measurements may be not reliable due to several
installation obstacles, such as bends, valves and diameter step changes. In many cases, due
to available space, such obstacles are close to the metering section causing flow disturbances.
Since the majority of flow meters depends on fully developed flow condition at these locations,
the flow metering is thus compromised in such situations.

Scientific and technological community has been evaluating flow disturbances patterns and
consequences as well as methods to diminish flow measurement errors and uncertainties. Rup-
pel and Peters (2004) and Mickan et al. (1997) identify downstream flow patterns of typical pipe
installation by means of experiments. Hilgenstock and Ernst (1996) compare computational
fluid dynamics (CFD) results and experiments, pointing numerical simulations as an interesting
tool for meters calibration and diagnostic. Moore et al. (2000) evaluate several mathematical
models for disturbed profiles and present an analytical sensitivity study of UFM for some con-
figurations. Holm et al. (1995) proposed the calculation of a numerical % factor in order to
evaluate various installation effects on UFM. Ferreira (2010) presents a modern numerical ap-
proach about disturbed flows and numerical k factor calculation. Hilgenstock and Ernst (1996);
Ruppel and Peters (2004); Moore et al. (2000); Ferreira (2010) also explore UFM sensibility to
several transducers installation angles (6).

On the other side, according to their measurement principle, UFM are relatively sensitive to
flow profile disturbances and such dependence can be better understood by knowing their basic
configuration and operational fundamentals.

UFM are composed, at least, by two ultrasonic transducers transmitting and receiving ultra-
sonic pulses through the fluid, so composing a single acoustic channel (the so called sound path)
with a certain inclination («) relative to the pipe axis and with another inclination (¢) relative to
the vertical axis (y-axis), as shown in Fig. 1.
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Figure 1: Sound path installation angle.

Transit time UFM detect the time the ultrasonic pulse takes to travel from a transducer to
the other. Transit mean velocities are then obtained by dividing the length (L) by the measured
times. Because there is a flow velocity field, transit time from transducer A to B (¢ 4 ) is smaller



then transit time from transducer B to A (tp4). The transit mean velocities represent the mean
velocities of the acoustic pulse along the sound path, downstream and upstream (45 and up 4,
respectively). These velocities are composed by the sound propagation velocity in the fluid (c)
plus a portion (Vsp) which represents the interference of the flow velocity field in the acoustic
signal velocity, as show in Egs. (1) and (2).
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The unknowns Vsp and ¢ can be found by solving the algebraic system of Egs. (1) and (2)
and the result is shown in Egs. (3) and (4).
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Due to their measurement principle, UFM calculate ¢ and Vsp. Nevertheless the flow cross
sectional mean velocity (u,,) is useful on volumetric flow rate (()) calculation. May A be the
pipe cross sectional area and ,, the uniform flow velocity perpendicular to A, () may be then
obtained by Eq. (5).

Q= upA &)

UFM use a correction factor (k), also called profile fflctor (Kochner et al., 1996) or hydro-
dynamic factor (Moore et al., 2000) to obtain u,, from Vgp (Eq. (6)). (Carlander and Delsing,
2000; Mylvaganam, 1989)

Uy, = kVS P (6)
The volumetric flow rate (()) is finally obtained by Eq. (7).

Q = kVspA (N

This k factor is an input parameter to UFM and impacts directly on the flow rate reading,
as shown in Eq. (7). In order to obtain it AGA (2007) and ABNT (2010) indicate the classical
profile of Nikuradse (1966) for turbulent fully developed flows. Since it depends on the flow
profile, there is a relationship between k factor and Reynolds number (AGA, 2007; ABNT,
2010; Nikuradse, 1966; Schlichting, 1968), based in fully developed flow condition. Because
UFM expect fully developed flow, the scientific community tries to better understand how the
absence of this condition (i.e. the presence of disturbed flows) may interfere in the flow rate
measurement quality (Holm et al., 1995; Hilgenstock and Ernst, 1996; Mickan et al., 1997,
Moore et al., 2000; Ruppel and Peters, 2004; Ferreira, 2010).

This paper presents a comparative analysis between numerical £ factors for disturbed and
fully developed cases. Two pipe configurations have been tested and both numerical and analyt-
ical fully developed k factors are considered. The analysis explores variation of UFM distance
from pipe bend, UFM transducers installation angle () and Reynolds number.



2 MATHEMATICAL MODEL AND NUMERICAL SIMULATION PARAMETERS

This section presents the governing equations used to mathematical modeling, the boundary
conditions, geometry configurations, meshes, the numerical method used to obtain all follow
results and the calculation of the numerical correction factor.

2.1 Conservation equations

Considering stationary flow, fluid incompressibility and constant viscosity conditions, the
turbulent flow may be predicted by the mass and the momentum conservation equations. These
equations need statistical treatment so that time depend fluctuations of the turbulent phenomenon
can be considered (Tennekes and Lumley, 1972). Once these statistical method is applied, mass
and momentum conservation equation may be given in index notation by Egs. (8) and (9), re-
spectively.
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Where p is the fluid density, u; is the velocity component in direction ¢, u; is the turbulent

mean velocity in direction ¢, p is the turbulent mean pressure, p is the dynamic viscosity and jup
is the turbulent viscosity, given by the turbulence model.

2.2 Turbulence modeling

The momentum equation considering turbulence needs additional equations to be solved.
These equations come from the turbulence model. In this paper the standard £—< model has
been used, as well as the Boussinesq hypothesis, which considerate the turbulent viscosity (zi7)
for the relation between the Reynolds stresses tensor and the turbulent mean velocity, as shown

in Eq. (10). (Schlichting, 1968)
ou;  Ou;
= 10
Where 77;; is the Reynolds stresses tensor. Two extra transport equations must be solved in

order to obtain p7. Transport equations for £ (turbulence kinetic energy) and for ¢ (turbulence
eddy dissipation) are Eqs. (11) and (12), respectively. (Launder and Spalding, 1974)
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Where P, is obtained from Eq. (13) and oy, , 0., C.; and C., are constants of the model and
their values are presented in Tab. 1.

ou; (Ou; 0uj
Py = pra— = + 22 1




The turbulent viscosity (1) is finally obtained from Eq. (14).
k2
HT = PCM? (14)

Where C,, is a constant of the model and its value is also presented in Tab. 1. (Launder and
Spalding, 1974; Versteeg and Malalasekera, 2007)

Table 1: Constants of the standard k— model.

O O¢ Csl C€2 CH
1.0 1.3 144 192 0.09

2.3 Geometries and meshes

Two typical pipe configurations have been carried out in this paper: single bend and double
bend out-of-plane. In both cases internal diameter of 300 mm has been used as well as the 100D
(30,000 mm) downstream straight pipe length. Each pipe bend has internal curvature radius of

1.0D and has been positioned downstream of a 2.0D length straight pipe. These geometries are
illustrated in Figs. 2 and 3.
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Figure 2: Single bend pipe configuration.

Several hexahedral meshes have been tested. The meshes have been generated by ANSYS
ICEM CFD?™ with Multiblock technique. The test consisted in doubling the number of mesh
nodes and analysing if it still influences some reference parameters. Volumes maximum size
and height have been varied in order to generate finer meshes. Figure 4 shows the meshes tested

in the single bend case in this paper. Same proceedings have been used in the double bend case.
Mesh tests results are better commented in section 3.

2.4 Boundary conditions and fluid model

Boundary conditions are also necessary to solve the governing equations system. Here,
smooth wall and no slip condition have been considered for pipe wall. Inlet condition has
been set as normal uniform velocity profile so that desired Reynolds numbers were achieved.
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Figure 3: Double bend pipe configuration.

Figure 4: Hexahedral meshes used for numerical solution.

Turbulence parameters (k and ¢) at the inlet have been set according to the turbulence intensity
(I), defined by Eq. (15).

[=— (15)

Where v’ is the root mean square of the turbulent velocity fluctuations and @ is the mean
velocity.

In the absence of any experimental data, turbulent intensity is set as medium (3.7%), i.e.,
I = 0.037, as suggested by Ansys, Inc. (2010a). Therefore, inlet boundary conditions may be
expressed by the set of Eq. (16), as follows.

pRe 3 5 k2
Uinlet = p_D; Vinlet = 0; Winlet = 0; kinlet = 51271'2; Einlet = pCM_T (16)
Where the relation pp = 1000/ is used. (Ansys, Inc., 2010a)
Average static pressure (in the same value of reference pressure, i.e., 1 atm) has been set as



overall outlet condition. Such condition is mathematically represented by Eq. (17).

1
Doutlet = latm = Z /pip,outlet dA (17)
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Where p;;, outicr 1S the pressure at each integration point over the outlet.
By modeling the fluid, air at 25°C has been considered in all cases. Table 2 resumes such
fluid input parameters.

Table 2: Synthesis of fluid parameters.

Fluid Air at 25°C
Density (p) 1.185 kg/m?
Dynamic Viscosity () 1.831x107° kg/m.s
Reference Pressure 1 atm

2.5 Numerical solution

Commercially available CFD code has been used to achieve numerical solution (Ansys, Inc.,
2010b). The software uses the Finite Volume Method conjugated with Multigrid accelerated
Incomplete Lower Upper factorization technique for solving the discrete governing equations
algebraic system. As convergence criteria, the root mean square (RMS) residuals of the linear
solution of discrete governing equations are controlled to be smaller than 1x10~® with double
precision. The advection scheme chosen was the High Resolution (Ansys, Inc., 2010a). All
runs were performed by the 8 machines cluster at Laboratério de Fendmenos de Transporte
Computacional (LFTC) of Universidade Federal do Espirito Santo (Ufes). Each PC is equipped
with Quad Core processor 2.4 GHz, 4.0 GB memory and 8 MB cache.

2.6 Calculation of the k factor

Equation (7) shows that any deviation in the k factor interferes directly the flow rate. In this
paper, the k factor is numerically obtained in order to quantify the deviation in the flow rate due
to flow disturbances. This numerical approach is based on Holm et al. (1995) suggestion and
uses numerical integration to obtain Vgp.

Before any mathematical treatment, it is important to remark the assumptions to this ap-
proach. In fact, the sound path is complex, since it depends on acoustics and its interaction with
the flow field, as shown by Yeh and Mattingly (1997). It is also known that velocity gradients
along the sound path refract it, as specified by Mathias (2010). However, in this paper, linear
and non-deformable sound path has been considered. More reasonable treatment of the such
relations between the sound path and the flow field is a goal for further work.

AGA (2007) defines the correction factor (k), except for the vector approach, as shown in
Eq. (18).

(18)
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The Reynolds number is used to obtain ., as shown in Eq. (19).
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According to the given definition in Eq. (18) above, Vsp may be mathematically interpreted
as the velocity projections’ mean value over and in the direction of the sound path. Using the
coordinate system and angles shown in Fig. 1 the projection of any three dimensional velocity
vector may be represented as a function of its components u, v and w by Eq. (20).
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The Trapeze Rule (Filho, 2007) has been applied in order to solve the integrals above. The
general formulation for numerical integration of Vgp gets the form represented in Eq. (21).

N+1
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Where N is the number of integration points, the subscript p indicates the value of a velocity

component at the p-th integration point and AL is given by L, — L,_;.

2.7 The calculation of k factor error

Since the £ factor is directly related to the flow rate calculation, it is important to quantify its
error due to disturbances. Many authors have evaluated this error, Ak, (Hilgenstock and Ernst,
1996; Ruppel and Peters, 2004; Ferreira, 2010) as follows in Eq. (22).

A - Fdist — Krep (22)
kref

Where Ak is the error shift, k4 is the numerical k factor obtained for a disturbed profile
and k. is the reference k factor.

In this paper, two references have been compared: the semi-empirical results of Nikuradse
(1966), which is suggested by AGA (2007) and ABNT (2010) as the fully developed turbulent
profile; and the numerical results obtained by Martins and Ramos (2011b) for a straight pipe,
80D from the entrance for several Reynolds numbers.

3 RESULTS AND DISCUSSION

The main results to the mesh test are now presented and commented. Table 3 presents some
features of the double bend case, which has presented slower converge compared with the single
bend case. It is important to remark that from mesh 2 on, the result of the previous mesh has
been set as the initial condition for the current processing.

Reynolds number 1x10° has been set during the mesh test. Figure 5a shows the u velocity at
pipe center along the straight section after the second bend for all tested meshes. Figures 5b, 5¢
and 5d present non-dimensional velocity components (respectively u, v and w) along y-axis
20D after the second bend. Such axis and straight length have been chosen just for example.

Figure 5 indicates that from mesh 6 on, the velocities near the wall have not been influenced
by the mesh resolution any more. This behavior is easily noticed in Figs. 5b and 5d. Never-
theless, Figs. 5a and 5c suggest that mesh 6 does not represent well the results of mesh 7. On



Table 3: Computational features for double bend case mesh test.

CPU time Number of

Mesh Nodes

[min] processors
1 90,400 5 31
2 187,016 8 31
3 363,463 13 30
4 710,494 28 30
5 1,476,708 47 30
6 2,924,394 93 30
7 5,793,672 154 30
8 10,629,820 280 32

the other hand, mesh 7 reproduces reasonably mesh 8 for all tested parameters. Thus, mesh 7
has been chosen to run all other double bend cases in this work. Same methodology has been
applied to the single bend case. Once its features are quite similar they are not resumed in a
table in this paper.

Figure 6 shows k factor calculation for the single bend case, considering variation of instal-
lation angle, 6 (0, 30, 45, 60 and 90°), straight pipe length, x/D (5, 10, 15, 20, 40, 60 and 80)
and Reynolds number from 1x10° to 2x10°. As commented in section 2.7, the k factor at 80D
of a straight pipe has been considered as a fully developed flow profile obtained by Martins and
Ramos (2011b) and it is shown in all straight pipe lengths as a reference. The k factor suggested
by AGA (2007) and ABNT (2010) is shown as well.

As can be noticed, the £ factor obtained at 80D, considering distinct installation angles,
tends to collapse, as expected for a flow profile almost symmetric. For shorter straight pipe
lengths, the calculated £ factors tend to be greater than fully developed case and vary with the
installation angle.

At 5D, the k factor error (calculated using Eq. (22) presented in section 2.7) for § = 90°
reaches the maximum 7.58% when compared to the fully developed case, considering Martins
and Ramos (2011b) profile. If the error is calculated based on Nikuradse (1966) profile, its
value is 8.74%.

For other straight lengths, the maximum error is reached for # = 0°. Such behavior is
expected since flow asymmetries are remarkable at this angular position (Hilgenstock and Ernst,
1996; Ruppel and Peters, 2004; Ferreira, 2010). Generally speaking, k factor error tends to
reduce from shorter to longer straight lengths, once the flow field tends to the fully developed
case.

It is remarkable the behavior of Ak for # = 30°. For such installation angle, & factor errors
vary from 0.01% to 3.12% at all straight lengths for Martins and Ramos (2011b) reference.
If Nikuradse (1966) reference is considered, Ak varies from 0.12% to 4.11%. For all other
installation angles, these variation occurs between 0.01% and 7.58% for Martins and Ramos
(2011b) reference and between -0.03% and 8.74% for Nikuradse (1966) profile. Such behavior
may indicate new proceedings for installation of ultrasonic flow meters, in order to reduce data
reading errors.

On the other hand, Fig. 7 shows the behavior demonstrated by & factor generated by double
bend configuration. As observed to the former case, shorter straight lengths generate £ factors
quite distinct from the fully developed flow.

Although the k factor errors tend to reduce at longer straight lengths, when compared to
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Figure 5: Mesh test results for Reynolds number 1x10°.

the fully developed case, such reduction is not as well behaved as observed in the single bend
configuration. This behavior is consequence of the complex flow effects generated by the pipe
bends and may reach 8.77% for 6§ = 30° at 20D, having Martins and Ramos (2011b) as the
reference profile. If Nikuradse (1966) profile is considered, such maximum shift is 9.82% for
the same conditions.

Typically, UFM computers obtain the correct k factor by a convergence process which calcu-
lates a zero of function. The double bend £ factor curves show positive and negative derivatives
and inflexion points, which increase computational effort for these purposes. Such behavior
may be easily noticed at 20D.

Such effects tends to reduce at longer straight pipes and it is not completely eliminated even
at 80D, where the errors reaches the maximum of -1.07% for § = 0°, considering Martins and
Ramos (2011b) profile. If the error is calculated based on Nikuradse (1966) profile, its value is
1.56% for 6 = 60°.

4 FINAL REMARKS

Numerical simulations using CFD techniques have been used to calculate the flow field for
two typical pipe configurations: single bend and double bend out-of-plane. Numerical inte-
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Figure 6: Correction factor (k) versus Reynolds number (Re) for several distances from the single bend (x) and
installation angles (6): (4+) 68 = 0°, (¢) 8 = 30°, (L)) § = 45°, (/\) 6 = 60°, (x) 8 = 90°, (o) numerical fully
developed case (Martins and Ramos, 2011b) and (—) analytical fully developed based on Nikuradse (1966) profile.

gration has allowed the calculation of numerical correction factors for UFM. The results for
several Reynolds numbers, transducers installation angles and straight pipe lengths have been
compared with two references (Martins and Ramos, 2011b; Nikuradse, 1966).

Disturbed flows have presented errors of several magnitudes according to the varied param-
eters. Such error shifts have tended to be shorter when Martins and Ramos (2011b) & factors
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Figure 7: Correction factor (k) versus Reynolds number (Re) for several distances from the double bend (x) and
installation angles (6): (4+) 68 = 0°, (¢) 8§ = 30°, () § = 45°, (/\) 6 = 60°, (x) 8 = 90°, (o) numerical fully
developed case (Martins and Ramos, 2011b) and (—) analytical fully developed based on Nikuradse (1966) profile.

have been considered instead of Nikuradse (1966) k factors as the fully developed reference.
Since Nikuradse (1966) profile is suggested by AGA (2007) and ABNT (2010), the present
results may indicate, at least, a revision of such documents.

UFM have shown reasonable sensibility to transducer installation angle, which confirms the
results of Hilgenstock and Ernst (1996), Ruppel and Peters (2004), Moore et al. (2000) and



Ferreira (2010). It is important to remark the results for 30° for the single bend case. Such
angle have presented shorter error shifts at all straight pipe lengths. A reconsideration of the
UFM installation proceedings is suggested aiming error reductions.

The present results also suggest that the developed flow condition is almost achieved at 80D
downstream of a single bend, as commented by Martins and Ramos (2011a). But & factor error
shift still reaches the maximum of 1.05% or 0.28% at 80D when compared to Martins and
Ramos (2011b) and Nikuradse (1966), respectively.

Double bend cases have presented more complex results, which may be explained by the
swirl effect downstream of such pipe configuration. The difficulty to handle with convergence
processes in order to calculate the correct k& factor has been commented, since the curves of k
versus Re have presented derivative sign changes.

Finally, since there are more appropriate turbulence models to take into account flows with
vortex and swirl effects (Versteeg and Malalasekera, 2007), the use of Reynolds stresses models,
or even LES, is now commented as a goal for future research work. The comparison between
numerical and experimental swirl effects by means of tangential velocity profiles as well as the
relations between acoustics and flow dynamics are goal for further work as well.
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