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1 Introduction
Over the last 20 years, the direct numerical simulation (DNS) of viscoelastic fluids has been

providing relevant information on the polymer-induced drag reduction phenomenon. The polymer
contribution to the Newtonian solvent is usually taken into account by means of a dumbbell model.
Most of such models make use of a conformation tensor to describe polymer orientation. This tensor
is formed by the instantaneous orientation of polymer dumbbells, qi, and has entries cij = 〈qiqj〉
(the angle brackets stand for an ensemble average). By definition, the conformation tensor is sym-
metric positive definite (SPD). Nevertheless, simulations of turbulent flows of viscoelastic fluids may
breakdown by reason of the loss of the SPD property.

In this context, Sureshkumar and Beris [1] firstly overcame this issue by adding an artificial dif-
fusion term into the evolution equation of the conformation tensor. However, even if this solution is
largely used, it brings a non-physical term into the equation, which must be adjusted to be as small as
possible. More recently, Dallas et al. [2] presented results for drag-reducing flows without any artifi-
cial assumption by adapting an eigendecomposition method [3] that preserves the finite extensibility
of the polymer chain (if the model predicts so) and the SPD property of the conformation tensor.

Other remarkable methodologies are available in the literature, as, for instance, the log-conformation
[4], the square-root [5] and the kernel [6] transformations. However, far as we know, except for an
adaptation of the log-conformation applied to turbulent drag-reducing channel flow [8], these promis-
ing methods have only been applied to (very) low Reynolds number cases and high Weissenberg
numbers in 2D or three-periodic cases, and, therefore, without drag reduction.

In the present work, we apply the square-root [5] and the rootk kernel [6] transformation to tur-
bulent drag-reducing channel flows. Such results are compared with those obtained with the standard
formulation by Thais et al. [7]. The need of maintaining (or not) an artificial stress diffusivity in order
to preserve numerical stability is also assessed.

2 Methodology
The flow of a FENE-P fluid is solved by DNS for a channel of dimensions Lx × Ly × Lz =

8π × 2 × 1.5π with a mesh Nx × Ny × Nz = 512 × 129 × 128. The friction Reynolds number,
Reτ , is equal to 180 and the friction Weissenberg number, Wiτ , and the maximum extensibility of the
polymer chain, L, were varied to give four different levels of elasticity.

The numerical method is the same of that presented by Thais et al. [7], but instead of using the
standard evolution equation for the conformation tensor, we consider either the square-root [5] or the
rootk kernel [6] transformation.

3 Results
Early attempts to simulate turbulent channel flows using the square-root and the rootk kernel

(with k = 2) transformations resulted in unbounded values for the conformation tensor which led to
numerical divergence. Thus, analogously to [1], we introduced an artificial stress diffusion into the
evolution equation of the transformed conformation tensor.

Regarding computation time, when compared to the standard formulation, the square-root trans-
formation showed to be just a bit slower (≈ 12%), while the rootk kernel transformation can be more
than 500% slower.
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As shown in Fig. 1, the square-root transformation provides results which are underestimated
with respect to the standard formulation (at Reτ = 180, Weτ = 50, L = 100), even for higher
Schmidt numbers (Sc = ν0/κ, where ν0 is the solution kinematic viscosity at zero shear and κ is the
stress diffusivity). It is worth noting that underestimations are also observed for other quantities (e.g.
velocity profile, Reynolds stresses and drag reduction percentage).
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Figure 1: Normalized time-averaged non-null components of the conformation tensor.

We currently explore higher Schmidt numbers as well as other values of k (= 2, 4, 8, 16) for the
rootk kernel transformation in order to evaluate if these transformations can provide quantities that
are closer to benchmark results.
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