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Abstract: In this work, a square-root formulation is implemented in a finite-volume numerical code and used to simulate
the flow of an Oldroyd-B viscoelastic fluid in a channel and a planar cross-slot geometries. These results are validated
by comparing them to previous numerical results, obtained using a standard extra-stress tensor formulation and also to
analytic solution, in order to exhibit the benefits of the square-root formulation for the studied geometries.
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1. INTRODUCTION

Existing models of viscoelastic fluids present challenging problems for numerical computation, since the direct cal-
culation of the viscoelastic extra-stress tensor evolution produces numerical instabilities that lead to the loss of positive-
definiteness of the conformation tensor, what causes the numerical scheme to break down (Dupret and Marchal, 1986).

In this context, Sureshkumar and Beris (1995) firstly overcame this issue by adding an artificial stress diffusion term
into the numerical problem. However, even if this solution is largely used, it brings a non-physical term into the equation,
which must be adjusted to be as small as possible. One year later, Sun et al. (1996) presented results for an adaptive
version of a viscoelastic stress splitting scheme, which has been named AVSS scheme and performed very well for higher
Weissenberg values of viscoelastic flows. The merits of each one of these strategies to stabilize the numerical computation
of non-Newtonian fluids have been systematically studied later (Amoreira and Oliveira, 2010).

Following to the AVSS scheme, other remarkable methodologies have been introduced, as, for instance, the log-
conformation (Fattal and Kupferman, 2004), the square-root (Balci et al., 2011) and the kernel (Afonso et al., 2012)
transformations. These promising methods have been applied to (very) low Reynolds number cases and high Weissenberg
numbers in 2D or three-periodic cases, with good results.

In the present work, we apply the square-root formulation (Balci et al., 2011) to Oldroyd-B fluid for a channel and a
cross-slot laminar flows. Such results are compared with those obtained from the standard formulation by Mompean and
Deville (1997). Potential benefits of this formulation are also discussed.

2. NUMERICAL METHOD

In the present study, the flow of an isothermal, incompressible, viscoelastic fluid flow is considered. Under these
conditions, the set of equations that needs to be solved is the conservation of mass,

∇ · u = 0 , (1)

along with the momentum conservation equation,

ρ

[
∂u

∂t
+∇ · (uu)

]
= −∇p+∇ · (η0∇u + T) + ρg , (2)

where u represents the velocity vector, T the viscoelastic extra-stress tensor, p the pressure, ρ the volumetric mass density,
η0 the zero-shear viscosity and g the gravity.

The numerical method used to solve the above equations is a finite-volume technique in space and second-order
discretization in time (Adams-Bashforth two-step method), whereas a semi-implicit code is used for the numerical calcu-
lations. A detailed description of this code formulation is presented in the work of Mompean and Deville (1997).

2.1 Extra-stress evolution

The tensor T that figures in Eq. (2) can be described in many different ways, depending on the viscoelastic model
chosen. The Oldroyd-B model is an extension of the Upper Convected Maxwell model and presents a constitutive equation
capable of describing the viscoelastic behaviour of non-Newtonian polymeric solutions under general flow conditions. The
constitutive equation for the viscoelastic extra-stress tensor T, according to the Oldroyd-B model, is (Bird et al., 1987):

T + λ

[
∂T

∂t
+∇ · (uT)− (∇u)

T ·T−T · ∇u
]

= η1γ̇ , (3)



where the superscript T denotes the transpose matrix, λ is the material relaxation time, η1 is the constant polymeric
viscosity and γ̇ is the rate-of-strain tensor, defined as γ̇ = ∇u + (∇u)

T .

2.1.1 Conformation tensor formulation

The Oldroyd-B model can also describe polymer molecules orientation by making use of a conformation tensor, which
is, by definition, symmetric positive-definite (SPD). The polymer conformation tensor c evolves according to the equation:

Dc

Dt
= c · ∇u +∇uT · c + s(c) , (4)

where the quantity
D

Dt
represents a material derivative.

The tensor s(c) in Eq. (4) takes different forms, depending on the non-Newtonian model assumed. For the Oldroyd-B
model, we have:

s(c) =
1

Wib
(I− c) . (5)

Wib is the Weissenberg number, defined as:

Wib =
Uλ

l
, (6)

where U is the inlet bulk velocity and l is a characteristic length.
It is important to remark that the velocity gradient tensor has entries∇uij = ∂uj/∂xi.

2.1.2 Square-root formulation

Balci et al. (2011) proposed the square-root transformation for the conformation tensor c. The square-root (matrix) of
the conformation tensor b is considered and the conformation tensor may be recovered by the following operation:

c = bT · b . (7)

The square-root tensor b being symmetric, Eq. (7) also writes c = b · b.
Replacing Eq. (7) into Eq. (4), using Eq. (5), yields

DbT

Dt
· b + bT · Db

Dt
− bT · b · ∇u−∇uT · bT · b +

bT · b− I

Wib
= 0 . (8)

Multiplying Eq. (8) on the left by b−T and on the right by b−1, and rearranging, yields(
Db

Dt
− b · ∇u +

b− b−T

2Wib

)
· b−1 = −b−T ·

(
DbT

Dt
−∇uT · bT +

bT − b−1

2Wib

)
. (9)

Regarding Eq. (9), it is easily shown that one side is minus the transpose of the other. Therefore, each side of this
equation must be anti-symmetric, yielding(

Db

Dt
− b · ∇u +

b− b−T

2Wib

)
· b−1 = a , (10)

or

−b−T ·
(
DbT

Dt
−∇uT · bT +

bT − b−1

2Wib

)
= a , (11)

where a is an anti-symmetric tensor. Since b = bT and the goal here is to find an evolution equation for the square-
root of the conformation tensor, one can either multiply Eq. (10) on the left by b or Eq. (11) on the right by bT , which
respectively gives

Db

Dt
− b · ∇u− a · b +

b− b−1

2Wib
= 0 , (12)

and

Db

Dt
−∇uT · b + b · a +

b− b−1

2Wib
= 0 . (13)



In both Eqs. (12) and (13), the first and the last terms on the left-hand side are symmetric. Defining r = b ·∇u+a ·b,
the transpose of r is rT = ∇uT · bT + bT · aT = ∇uT · b − b · a. It is important to remark that the non-symmetric
terms in Eq. (12) are equal to −r and, in Eq. (13), equal to −rT . Since Eq. (12) is equal to Eq. (13), r must be equal to
rT , which implies that r is symmetric. Thus, if r = rT , the entries of a can be calculated as a function of b and ∇u by
the relation rij = rji, which yields the linear system b11 + b22 b23 −b13

b23 b11 + b33 b12
−b13 b12 b22 + b33

 a12
a13
a23

 =

 t1
t2
t3

 , (14)

where the terms t1,2,3 are given by

t1 = (b12∇u11 − b11∇u12) + (b22∇u21 − b12∇u22) + (b23∇u31 − b13∇u32)
t2 = (b13∇u11 − b11∇u13) + (b33∇u31 − b13∇u33) + (b23∇u21 − b12∇u23)
t3 = (b13∇u12 − b12∇u13) + (b23∇u22 − b22∇u23) + (b33∇u32 − b23∇u33)

. (15)

3. VALIDATION AND RESULTS

Simulations have been performed in two different geometries, a two-dimensional planar channel and the well-known
cross-slot geometry. Both studied geometries are shown schematically in Fig. 1.
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Figure 1: Schematics of the geometries.

3.1 Planar channel

The channel length and width were fixed at a 10 : 2 proportion to ensure a fully-developed flow away from the inlet. A
regular quadrilateral mesh was used, with 100 x 50 cells. Fully-developed velocity profile (with average value U = Uin)
is applied at the inlet and Dirichlet boundary condition for the pressure is assumed at the outlet. At the walls, we apply
the no-slip and impenetrability conditions (i.e. u = v = 0). Table 1 summarizes the flow parameters for the channel
simulations.

Table 1: Simulation parameters for the channel flow.
Symbol Property (unit) Value
L Half-width (m) 1.0
ρ Density (kg/m3) 1.0
η0 Zero-shear viscosity (Pl) 1.0
η1 Polymeric viscosity (Pl) 8.0
λ Relaxation time (s) 0.012
Re Reynolds number 1.0
De Deborah number 0.1

The fully-developed profiles for the extra-stress tensor and velocity components have been compared to the analytic
solution, provided by Dallas et al. (2010), which is shown in Fig. 2 for a Reynolds (Re) and Deborah (De) number equal
to 1.0 and 0.1, respectively, at the channel central plane.



Concerning the simulations performed following the square-root formulation, the extra-stress tensor T is retrieved
from the square-root tensor b using the relation shown in Eq. 16,

T =
η1
λ

(b · b− I) . (16)

The velocity profile exhibited in Fig. 2a is nondimensionalized by the bulk velocity U , while the extra-stress profiles
in Figs. 2b, 2c and 2d are nondimensionalized according to Eq. 17,

T ∗ = T
2L

U (η0 + η1)
. (17)
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(b) Streamwise extra-stress component, Txx.
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(c) Spanwise extra-stress component, Tyy .
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(d) Shearwise extra-stress component, Txy .
Figure 2: Dimensionless profiles at the middle of the channel.

An explicit result presented in Fig. 2 is the very good agreement between the two formulations (standard and square-
root), for each one of the four profiles. These formulations are validated by a comparison to the analytic solution for the
same profiles. One can notice that the difference found in Fig. 2c is due to numerical round-off errors.

Beyond that, simulations have been performed for several parameters variations - resulting in varied Reynolds and
Deborah number flows - and same agreement between both formulations was found for all the components profiles, and
also for evolution in time (not shown here).

3.2 Cross-slot

The cross-slot arrangement consists of two perpendicular and bisecting channels with two opposing inlets and outlets
(see Fig. 1b), which results in a flow field with a stagnation point at the center of the geometry, where the flow velocity
is zero. Flow is provided in each inlet arm of width d with bulk velocity U . At the symmetric central plane x = 0, the
two inlet streams meet and proceed to the two outlet arms, of identical width d. The lengths of each one of the four arms
are 10d, which is confirmed to be enough for the flow to be fully developed (Poole et al., 2014). For illustration, we see
in Fig. 3 a snapshot of a converged low-elasticity flow simulation (Re = 0.01 and De = 0.01). The pressure contours are
nondimensionalized according to Eq. 18,

p∗ = p
2

U2
. (18)



*

Figure 3: Velocity profiles (arrows) and pressure contours (colors) for a low-elasticity flow.

For both the standard and the square-root formulation, we use two meshes with a geometric progression for the element
sizes in the four arms, with increased density closer to the center of symmetry. In the central square, there is an uniform
mesh with cell spacing ∆xmin = ∆ymin. MeshM50 has ∆xmin = 0.02 d and meshM100 has ∆xmin = 0.01d. Similarly
to the channel simulation, fully-developed velocity profile is applied at both inlets and zero pressure condition is assumed
at the outlets. No-slip and impenetrability conditions are also considered. Table 2 displays the flow parameters for the
cross-slot simulations.

Table 2: Simulation parameters for the cross-slot flow.
Symbol Property (unit) Value
d Width (m) 0.01
ρ Density (kg/m3) 1000
η0 Zero-shear viscosity (Pl) 0.005
η1 Polymeric viscosity (Pl) 0.04
λ Relaxation time (s) 20.0
Re Reynolds number 0.01
De Deborah number 0.1

Cruz et al. (2014) defined a benchmark variable Wi0 for viscoelastic flow, calculated using the strain rate ε̇0 at the
central stagnation point,

Wi0 = λ ε̇0 = λ

√(
∂u

∂x

∣∣∣∣
0

)2

+
∂u

∂y

∣∣∣∣
0

∂v

∂x

∣∣∣∣
0

. (19)

The time evolution for this benchmark value appears in Fig. 4. With appropriate mesh refinement, this variable
presents a good convergence to the literature estimation. Furthermore, we observe a nice agreement between the original
extra-stress tensor and the square-root formulations.
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Figure 4: Time evolution for the local Weissenberg benchmark Wi0, as defined by Eq. 19.



4. FINAL CONSIDERATIONS

These preliminary results aim to validate the implementation of the square-root formulation into this numerical code,
for laminar flows with moderate viscoelasticity.

A simple and a rather complex geometry were studied, in order to access the coverage of the square-root method and
its adaptability in geometries with stagnation points.

In a future work, we hope to extend our work to tridimensional geometries and moreover, determine whether this
mathematical formulation proves itself as a powerful technique to increase numerical stability in a semi-implicit finite-
volume code, enabling simulations at increasingly viscoelastic flows, at which the standard formulation fails.
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