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Abstract: The numerical simulation of viscoelastic fluid flows can be compromised by the loss of positive definiteness 

of the conformation tensor. Recent transformations to the conformation tensor have been proposed in the literature, but, 

to the best of our knowledge, there are no published results of turbulent drag-reducing channel flows obtained with the 

root-form of the general kernel transformation. We present here results for the kernel-transformed FENE-P formulation 

for a case with moderate elasticity at friction Reynolds number equal to 180. Although the positive definiteness of the 

conformation tensor was preserved, this approach diverges due to the loss of boundedness of the conformation tensor, 

even with the addition of an artificial diffusion term. The damping effect of the artificial diffusion ensured numerical 

stability, but our best results predict a significant underestimation of the relative drag reduction. Finally, the 

computational cost of the kernel formulation has shown to be about five times higher than the standard formulation for 

our algorithm.  
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1. Introduction 

Over the last twenty years, the Direct Numerical 

Simulation (DNS) of viscoelastic fluid flows has 

been providing relevant information on the polymer-

induced drag reduction phenomenon [1, 2]. After the 

pioneering DNS of Sureshkumar et al. [3], several 

numerical works have helped to enhance the 

knowledge about this phenomenon: Dimitropoulos 

et al. [4-7], De Angelis et al. [8], Min et al. [9, 10], 

Dubief et al. [11], Housiadas et al. [12-15], Dallas et 

al. [16], Thais et al. [17-19] among others provided 

enriching data and discussions about the polymer-

induced drag reduction. The polymer contribution to 

the Newtonian solvent is usually taken into account 

by means of a dumbbell model. Most of such models 

make use of a conformation tensor to describe 

polymer orientation [20]. 

By definition, the conformation tensor is Symmetric 

Positive Definite (SPD). Nevertheless, numerical 

simulations of turbulent flows of viscoelastic fluids 

using high-order schemes usually face non-physical 

high-wavenumber instabilities (the so-called Hada-

mard instabilities [21]) that cause the loss of the 

positive-definiteness of the conformation tensor. 

Consequently, the uncontrolled growth of the non-

SPD points leads to non-physical results and the 

simulation usually breaks down after a few itera-

tions. 

Several proposals to overcome this issue are 

available in the literature. One that has been largely 

used is the addition of an artificial stress diffusion 

[22] that brings an elliptical character to the hyper-

bolic evolution equation of the conformation tensor. 

Since diffusion has no physical meaning at the 

simulated scales (even for a DNS), the results 

obtained with this method will always be confronted 

to the question of how intrusive this additional term 

is with respect to the original model [23]. A less 

invasive alternative is to apply the artificial diffusion 

only to the domain points where the SPD condition 

is not fulfilled (e.g. [24]). Also, alternatives without 

any artificial term do exist. They are usually based 

on flux-limiter schemes to overcome the typical 

exponential growth on the field of the conformation 

tensor due to the steep gradients inherent to high-

precision simulations of viscoelastic flows [16, 25-

27]. 

More recent solutions propose transformations to be 

applied to the conformation tensor in order to 

alleviate the steep gradients in the field of the 

conformation tensor, generally implying in the 

preservation of its positive-definiteness. This is the 
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case of the logarithm [28, 29], the square-root [30] 

and the kernel transformations [31]. Since for low 

Reynolds numbers there is no need (in general) to 

use artificial diffusion, the general kernel formula-

tion (usually considering the root-k case) has been 

proven to work very well and to provide more stable 

simulations. It simulated successfully the Poiseuille 

flow in a channel, the lid-driven cavity flow and the 

extrudate-swell free surface flow with an Oldroyd-B 

fluid [32], and, more recently, the Weissenberg 

effect [33]. However, some of these transformations 

have not yet been tested in the context of turbulent 

viscoelastic shear flows exhibiting drag reduction, 

which brings us to the scope of this paper. 

Housiadas et al. [15] performed simulations of 

polymer-induced drag-reducing channel flows using 

a modified version of the logarithm transformation 

[28, 29]. Since the square-root formulation [30] 

seems to be very promising [34], we test here a 

general version of it with the framework of the 

kernel formulation [31]. 

We evaluate here the performance of the kernel root-

k formulation [31] in turbulent channel flow using a 

FENE-P fluid. An algorithm with spectral-like 

precision originally using the standard conformation 

tensor formulation with the addition of artificial 

diffusion (see [17-19]) is considered. The need for 

maintaining or not artificial diffusion in the kernel 

formulation is also assessed.  

2. Mathematical modeling and numerical 

methods 

We consider here the flow of an incompressible 

viscoelastic fluid in three-dimensional planar chan-

nel flow. The equations for the conservation of mass 

momentum are scaled with the channel half-gap, h, 

and the bulk velocity, Ub, and read respectively: 

 0 u       (1) 

and 
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h h
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In Eq. (2), β = νS / ν0 is the ratio of the (Newtonian) 

solvent kinematic viscosity (νS) to the total zero-

shear-rate kinematic viscosity of the solution (ν0). 

The Reynolds number is Reh = hUb /ν0. The extra-

stress tensor, Ξ, represents the polymer contribution 

to the momentum and is accounted for by means of 

the Finitely Extensible Nonlinear Elastic (FENE) 

model with the Peterlin closure (FENE-P), yielding: 
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where Wih = λUb /h is the bulk Weissenberg number 

(λ being the fluid’s relaxation time), c is the 

conformation tensor representing the configuration 

of polymer molecules in the solution. The Peterlin 

function, f(tr(c)), imposes the maximum value, L, the 

extensibility of the molecules and reads: 
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The evolution equation for the conformation tensor 

assumes the form: 
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The conformation tensor used to model the polymer 

has physical constraints that must be preserved. 

Because of its physical interpretation as the confi-

guration of polymer molecules, the conformation 

tensor must be symmetric positive definite (SPD). 

However, this constraint can be violated when 

simulating viscoelastic fluids with moderate and 

high elasticity using high-order schemes. It is 

common to deal with the growth of non-physical 

high-wavenumber (Hadamard) instabilities that lead 

to the loss of positiveness of the conformation tensor 

[21]. 

The algorithm considered here adds an artificial 

diffusion term to the evolution equation of the 

conformation tensor. This dissipation term provides 

numerical stability and prevent the numerical 

scheme to breakdown. The evolution equation of the 

conformation tensor including artificial diffusion 

gets the form: 

(tr( ))
 T c

h h

DD f

Dt Wi Re


      

c c c I
c u u c c  (6) 

where Dc = κc /ν0 is the dimensionless stress diffu-

sivity, κ being the dimensional diffusivity. The value 

of Dc is properly adjusted to preserve the positivity 

of the conformation tensor of at least 99% of the 

total number of grid points, which guarantees nume-

rical stable simulations. 

2.1 The kernel root-k formulation 

In an effort to avoid points in which the SPD proper-

ty of the conformation tensor is lost, the kernel root-

k transformation proposed by Afonso et al. [31] is 

applied to the channel flow. 
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This formulation relies on the unique decomposition 

for the velocity gradient tensor proposed by Fattal 

and Kupferman [28, 29], which reads: 

1T    L u B Ω Nc     (7)  

where L is the transpose of the velocity gradient 

tensor, B is a symmetric tensor that commutes with 

the conformation tensor, and Ω and N are skew-

symmetric tensors. Replacing Eq. (7) into Eq. (5) 

yields: 
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Now, let us apply the following root transformation 

to the conformation tensor: 

 
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in which the operator   represents the kernel 

transformation, the tensor Qc is the orthogonal 

tensor formed by the eigenvectors of c in columns 

and that makes c diagonal, Λ
c
 is the conformation 

tensor in its diagonal form containing its eigen-

values, and k is the degree of the root. 

After some operations that are detailed by Afonso et 

al. [31], the evolution equation for the kernel root-k 

conformation gets the form: 
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It is important to remark that, as pointed out by 

Afonso et al. [31], if one uses k = 2 in Eq. (10), the 

square-root transformation by Balci et al. [30] is 

recovered. 

Since we are dealing with turbulent flows, for 

numerical stabilization purposes, an artificial stress 

diffusion term is added to Eq. (10), yielding: 
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where Dk = κk /ν0 is the dimensionless stress diffusi-

vity for the kernel root-k formulation. 

The set of Eqs. (1), (2) and (11) is solved by the 

hybrid MPI/OpenMP algorithm. The spatial discreti-

zation has spectral (Fourier) precision in the two 

homogenous directions (streamwise, x, and span-

wise, z) and is sixth-order accurate (compact finite 

differences) in the wall normal, y. Time discreti-

zation is second-order accurate (Adams-Moulton 

scheme) to dissipative terms and also second-order 

accurate (Adams-Bashforth scheme) to explicit 

terms. The pressure is coupled to the velocity by 

means of a higher-order generalization of the semi-

implicit fractional step method on a non-staggered 

grid by Armfield and Street [35]. De-aliasing and 

fourth-order filtering are used respectively in the 

non-homogenous and wall-normal directions in 

order to attenuate high-wave-number accumulation. 

3. Results  

The channel flow considered here has dimensions  

Lx x Ly x Lz = 8π x 2 x 3π/2 and the mesh used was 

Nx x Ny x Nz = 512 x 129 x 128. In the FENE-P 

model, the elasticity is controlled by two parameters: 

the maximum extensibility of the polymer molecule, 

L, here fixed at 30, and the zero-shear-rate friction 

Weissenberg number, Wiτ0 = λuτ
2
/ν0 (uτ being the 

friction velocity), which was kept equal to 50. The 

zero-shear-rate friction Reynolds number             

Reτ0 = huτ /ν0 was fixed at 180, corresponding to a 

bulk Reynolds number Reh = 2800. 

The present results are compared to the values of the 

public database by Thais [36]. These reference 

results were obtained with the original standard 

formulation based on the conformation tensor with 

the addition of artificial diffusion (following Eqs. 

(1), (2) and (6)). The simulations performed by 

Thais et al. [17-19] used the same discretization in 

space and time, and the artificial diffusivity neces-

sary to maintain stability was Dc = 5.6. 

We consider here three cases with the kernel 

formulation: two different levels of artificial diffu-

sion with k = 2, which recovers the square root 

formulation [30], and one case with a fourth-order 

degree for the root (k = 4). A summary of the 

artificial diffusivity used for each case and their 

respective relative drag reduction is presented in 

Tab. 1. 

Formulation Dα % DR 

standard 5.6 28.5 

kernel (k = 2) 5.6 14.0 

kernel (k = 2) 2.8 17.5 

kernel (k = 4) 1.4 11.6 

Table 1. Relation between artificial diffusivity and 

relative drag reduction for cases at Reτ0 = 180, L = 30, 

Wiτ0 = 50. 
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In Table 1, α may be equal to c in the standard 

conformation tensor formulation or equal to k in the 

kernel root-k formulation. 

It is important to note that using the same artificial 

diffusivity considered in the reference case with the 

kernel-based square-root formulation (k = 2) led to 

approximately half of relative drag reduction. 

Decreasing the artificial diffusivity by a factor of 2, 

the underestimation is still around 40% compared to 

the reference value. Moreover, when considering the 

degree 4 for the root, even dividing the artificial 

diffusivity by a factor of 4 (with respect to the value 

used in the standard conformation), the underesti-

mation of the relative drag reduction is approxi-

mately 60%. 

This underestimation becomes clearer when obser-

ving Figure 1, showing the profiles of the mean 

streamwise velocity and shear component of the 

Reynolds stress tensor.  

(a) 

(b) 

Figure 1. Profiles of the mean velocity (a) and shear 

component of the Reynolds stress tensor (b) in wall-units 

obtained with the kernel root-k (symbols) and standard 

(line) formulations at Reτ0 = 180, L = 30, Wiτ0 = 50. 

Comparing to the results obtained for the velocity 

profile (Fig. 1a) with the standard formulation, the 

kernel root-k formulation provides reasonable agree-

ment within the viscous sublayer (0 < y
+
 < 5). How-

ever, the velocity profile is considerably underesti-

mated in the log-law region (y
+
 < 30). 

As regards the shear component of the Reynolds 

stress tensor (Fig. 2a), it is noticeable that the kernel 

root-k formulation predicts peaks slightly closer to 

the wall and greater than the one calculated by the 

standard conformation formulation. This corrobo-

rates with the underestimation of relative drag 

reduction, since more energy is present in the 

fluctuation velocities.  

The results in Table 1 and Figure 1 suggest that, for 

a given degree of the root, the results obtained with 

the kernel root-k formulation get closer to the 

standard formulation as the artificial diffusivity 

decreases. However, values of artificial diffusivity 

lower than the presented here for both k = 2 and k = 

4 rapidly diverged due to unbounded values of the 

conformation tensor (limited in the FENE-P by the 

relation tr(c) < L2). According to Vaithianathan and 

Collins [23], this is related to the change of sign in 

the restoring elastic force when the conformation 

tensor stretches beyond the limiting value, leading to 

fast numerical divergence. It is worth noting that the 

original algorithm with the standard conformation 

tensor formulation never presented unbounded 

values for the conformation tensor, which suggests 

that this behavior might be enhanced by the 

enforcement of the SPD property of the confor-

mation tensor.  

From the perspective of polymer stretch, the 

underestimation is also remarkable, as shown in 

Figure 2 containing the mean profiles of the nor-

malized non-null components of the conformation 

tensor.  

The normalized streamwise component of the 

conformation tensor (Fig. 2a) presents a value of 

approximately 5.5 at the wall. The standard 

conformation formulation predicts a peak at y+ ≈ 10 

followed by a decrease when approaching the 

channel centerline. However, the results obtained 

with the kernel root-k formulation decrease 

monotonically from the wall without a peak value. 

Moreover, the polymer stretch in this direction is 

clearly underestimated with respect to the standard 

formulation. 

For the wall-normal and spanwise stretching compo-

nents (Figs. 2b and 2c, respectively), the behavior is 

very alike. The polymer stretch is very close to zero  
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(a) 

(b) 

(c) 

(d) 

Figure 2. Profiles of the mean normalized components of 

the conformation tensor in wall-units obtained with the 

kernel root-k (symbols) and standard (line) formulations 

at Reτ0 = 180, L = 30, Wiτ0 = 50. a) streamwise, b) wall-

normal, c) spanwise, d) shearwise 

in these two directions. The peak value that occurs at 

y
+
 ≈ 90 according to the standard formulation is 

considerably underestimated and located closer to 

the wall in the kernel root-k formulation. The peak 

values predicted by the kernel root-k formulation are 

from 1/2 (for the case with k = 4 and Dk = 1.4) to 3/4 

(for the case with k = 2 and Dk = 2.8) of the peak 

value given by the standard conformation formu-

lation. 

The shearwise component (Fig. 2d) departs from a 

non-zero value at the wall, increases until reaching a 

peak value at y
+
 ≈ 20, and decreases to zero at the 

channel centerline. Once again, the kernel root-k 

formulation underestimates the polymer stretch 

regardless of the artificial diffusivity. 

4. Concluding remarks  

We analyzed here the performance of the kernel 

root-k formulation applied to turbulent channel flow 

of FENE-P fluid. The aim of preserving the positive 

definiteness of the conformation tensor was achie-

ved. With the maintenance of the SPD property of 

the conformation tensor, the boundedness of the 

conformation tensor was violated, leading to the fast 

divergence of the present algorithm. An artificial 

diffusion term was needed to maintain numerical 

stability, but even with this remedy, the algorithm 

predicts unbounded values for the conformation 

tensor under a certain level of diffusivity. 

Since the original algorithm based on the standard 

conformation tensor formulation never presented 

unbounded values for the conformation tensor, the 

present results suggest that the preservation of the 

positive definiteness of the conformation tensor 

might promote the growth of unbounded values if 

any other special treatment is considered.  

The numerically stable results achieved for root 

degrees of 2 and 4 presented great underestimation 

of the polymer stretch, velocity profile and, conse-

quently, relative drag reduction. This underesti-

mation can be as great as 60% of the value obtained 

with the standard conformation tensor formulation 

and is about 50% for the best case achieved in the 

present work.  

Another worth noticing feature regards the computa-

tional cost of the tested formulation. The decom-

position in Eq. (7) is usually presented on the eigen-

basis of the conformation tensor [28, 29], which 

implies that its eigenvalues and eigenvectors must be 

calculated at each time step and each grid point. This 

operation being numerically costly, the simulations 

performed with the kernel root-k formulation were 
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about 5 times slower than the ones performed with 

the standard conformation tensor formulation. 

A special method to guarantee the boundedness of 

the conformation tensor must be considered. A 

promising approach would be, for instance, to adapt 

the mapping proposed by Housiadas et al. [15] in the 

logarithm conformation formulation. Properly 

adapted and implemented, this could allow simu-

lations with lower artificial diffusivity and, conse-

quently, greater polymer stretch and relative drag 

reduction.       
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La transformation kernel racine-k appliquée aux écoulements turbulents en canal plan  

 

La simulation numérique des écoulements viscoélastiques peut être compromise par la perte du caractère 
positif défini du tenseur de conformation. Des transformations récentes pour le tenseur de conformation ont 
été proposées dans la littérature, mais, à notre connaissance, il n'y a pas de résultats publiés d’écoulements 
turbulents en canal plan avec réduction de la traînée obtenus avec la transformation du type racine-k par la 
formulation générale kernel [Afonso et al., J. Non-Newt. Fluid. Mech., (2012)]. Nous présentons ici des 
résultats pour le modèle FENE-P avec la transformation kernel pour un cas avec élasticité modérée à nombre 
de Reynolds de friction égal à 180. Bien que la positivité du tenseur de conformation ait été préservée, cette 
approche diverge en raison du caractère non-borné du tenseur de conformation, même avec l’addition d’un 
terme de diffusion artificielle. L’effet d’amortissement de la diffusion artificielle a permis d’assurer la stabilité 
numérique, mais nos meilleurs résultats prédisent une sous-estimation non négligeable de la réduction de la 
traînée. Enfin, le coût de calcul de la formulation kernel est environ cinq fois plus important que celui de 
l’approche standard. 

 


