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Abstract. Most of the vortex identification criteria are based on the kinematics of the flow. In the present work we examine
the dynamic terms that are parts of a certain vortex identification criterion in order to decouple the influences of these
terms. This methodology is applied to Newtonian and viscoelastic drag-reducing flow in a plane channel.
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1. INTRODUCTION

Vortex identification is still a non-consensual issue in Fluid Mechanics. In this connection, different criteria are used to
identify a vortex. The most used criteria for vortex identification are based on kinematic quantities. These criteria would
be useful if one wants to associate vortices with other physics of the problem, such as the ability of the flow to optimize
diffusive or advective fluxes through the flow domain.

It is known that turbulent flows present ordered motion of vortices usually named coherent structures. These structures
interact with each other and with the flow, and a better understanding of such interactions may lead to more accurate
turbulent models and more precise control of turbulent processes as well. In the context of viscoelastic fluids, it is known
that the addition of polymers in a Newtonian fluid can lead to a drag reduction in turbulent flows (Graham, 2004; White
and Mungal, 2008) and this reduction is accompanied with a weakening of the turbulent structures (Stone et al., 2004;
Kim et al., 2007, 2008; Kim and Sureshkumar, 2013).

In the present work, based on the criterion developed by Jeong and Hussain (1995), we are evaluating the influence of
polymers diluted in a Newtonian fluid on the composition of the λ2-criterion from a dynamical viewpoint. The polymer
contribution is taken into account by considering the Finite Extensible Non-linear Elastic model with the Peterlin approx-
imation (FENE-P). We are using the DNS database provided by Thais et al. (2011, 2012), which encompasses Newtonian
and viscoelastic simulations.
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2. VORTEX IDENTIFICATION

2.1 The λ2-criterion

The λ2-criterion, originally proposed by Jeong and Hussain (1995), is based on the idea of local pressure minima.
The authors claim that a good mathematical entity containing such information is the Hessian of the pressure, He(p).
Departing from the Navier-Stokes equation,

∂u

∂t
+ u · ∇u = −∇p+

1

Reh
∆u , (1)

the Hessian of the pressure may be found by applying the gradient operator to it, which yields

∇
(
∂u

∂t

)
+∇ (u · ∇u) = ∇ (−∇p) +∇

(
1

Reh
∆u

)
. (2)

In Eq. (1),Reh = hUb/ν0 is the bulk Reynolds number, with h being a characteristic length scale, Ub the bulk velocity
and ν0 the kinematic viscosity.

At this point, Jeong and Hussain (1995) choose to look at the symmetric part of Eq. (2), because it contains the Hessian
of the pressure and the terms that effectively contribute to it. This equation reads

DD

Dt
+ D2 + W 2 = −He (p) +

1

Reh
∆D , (3)

and represents the evolution equation of the strain-rate tensor, D.
Jeong and Hussain (1995) advocate that the unsteady and viscous term in Eq. (3) should be dropped because they lead

to misleading results. More precisely, they present some specific cases in which unsteady flows identify vortices where
are no pressure minimum, and others in which pressure minima are identified in regions without vorticity. With such
assumptions, Eq. (3) becomes

D2 + W 2 = −He (p) , (4)

and the Hessian of the pressure depends only on kinematic tensors.
According to Jeong and Hussain (1995), the mathematical condition for local pressure minima at the plane of vorticity

is that the Hessian of the pressure must have two positive eigenvalues. If we reorder its eigenvalues so that λHe(p)
1 ≥

λ
He(p)
2 ≥ λ

He(p)
3 , than, it is sufficient to look at the sign of its intermediate eigenvalue, λHe(p)

2 . The authors propose,
however, that one can use Eq. (4) to look at the sign of the intermediate eigenvalue of the tensor D2 + W 2, λD

2+W 2

2 .
Thus, according to the λ2-criterion, the condition for a vortex is

λ
He(p)
2 > 0⇔ λD

2+W 2

2 < 0 . (5)

2.2 The inclusion of polymeric effects

In the FENE-P model, an extra-stress tensor containing tensions due to the presence of polymers is added to the
Navier-Stokes equations, as follows

∂u

∂t
+ u · ∇u = −∇p+

β

Reh
∆u +

1

Reh
∇ ·Ξ , (6)

where β is the ratio of the Newtonian solvent viscosity (νN ) to the total zero-shear viscosity (ν0 = νN + νp0), and the
extra-stress tensor, Ξ, is given by the relation

Ξ =
1− β
Wih

(f (tr(c)) c− I) , (7)

in which c is the conformation tensor representing the spatial configuration of polymer chains, and Wih = λUb/h is the
bulk Weissenberg number (λ being the relaxation time scale, Ub/h being a representative time scale).

The function f is given by the Peterlin function, which limits the maximum length of polymer chains to L, as follows

f (tr(c)) =
L2 − 3

L2 − tr (c)
. (8)
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Following Jeong and Hussain Jeong and Hussain (1995) and taking the symmetric part of the gradient of Eq. (1), after
some manipulation, we arrive at

D2 + W 2 = −dD

dt
+

β

Reh
∆D − He (p) +

1

Reh
SP , (9)

where He (p) is the Hessian of the pressure and SP is the symmetric part of∇(∇ ·Ξ).
Thus, when applying the λ2-criterion to a FENE-P-type fluid, the considered tensor is that on the sum of the left-hand

side in Eq. (9). If we consider the same assumptions made by Jeong and Hussain (1995), the polymer contribution to the
λ2-criterion is represented by the term (1/Reh)SP .

It is worth noticing that, although the λ2-criterion is considered a kinematic criterion, mainly because it is calculated
with the strain- and rotation-rate tensors, respectively D and W , this criterion is composed by dynamic entities (see the
terms in Eq. (9)).

3. A DYNAMICAL VIEWPOINT FOR THE λ2-CRITERION

In order to verify how each dynamic term on the right-hand side in Eq. (9) contributes to the identification of a λ2-
vortex, we work with the projection of Eq. (9) on the direction of the eigenvector (eD

2+W 2

2 ) associated to the intermediate
eigenvalue (λD

2+W 2

2 ) of the tensor D2 + W 2. This is obtained by applying the following operation to Eq. (9)

λD
2+W 2

2 =eD
2+W 2

2 ·
[
−dD

dt

]
· eD2+W 2

2 + eD
2+W 2

2 · [−He (p)] · eD2+W 2

2 +

eD
2+W 2

2 ·
[
β

Reh
∆D

]
· eD2+W 2

2 + eD
2+W 2

2 ·
[

1

Reh
SP

]
· eD2+W 2

2 .

(10)

Note that, on the left-hand side of Eq. (10), λD
2+W 2

2 is recovered and, on the right-hand side, the contribution of each
of the dynamical terms make up the λ2-criterion.

By expressing the kinematic quantity associated to the λ2-criterion as a function of the dynamic terms that cause the
motion, we are able to decouple the influence of the force-related quantities on the overall vortex structure. This approach
can be particularly useful in the case of viscoelastic turbulence, since we can analyze the dynamical quantities responsible
for the weakening of the turbulent structures (Stone et al., 2004; Kim et al., 2007, 2008; Kim and Sureshkumar, 2013) in
drag-reducing flows.

4. RESULTS

We use here the instantaneous velocity and pressure fields that are outputs of DNS of plane channel flows performed by
Thais et al. (2011, 2012) for Newtonian and viscoelastic fluids at a friction Reynolds number (Reτ0 = huτ/ν0, where h is
the channel half-gap and uτ is the friction velocity) equal to 1000. By varying the maximum extensibility of the polymer
chain (L) and its relaxation time (λ) – represented here in the form of the friction Weissenberg number, Wiτ0 = λu2τ/ν0
–, two levels of elasticity have been compared. The least elastic case (L = 30 and Wiτ0 = 50) provides a relative drag
reduction of 30% whereas the most elastic one (L = 100 and Wiτ0 = 115) achieves 58%.

The mean contribution of each one of the dynamic terms in Eq. (10) in wall-parallel planes is presented in Fig. 1.
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(b) Viscoelastic, L = 30, Wiτ0 = 50
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(c) Viscoelastic, L = 100, Wiτ0 = 115

Figure 1. Contribution of terms in Eq. (10) for the identification of a λ2-vortex at Reτ0 = 1000.

Figure 1(a) contains the results for the Newtonian case. All terms tend to be null at the wall and at the channel
centerline. The Hessian of the pressure is essentially positive, contributing in the sense of strain regions instead of vortex
regions. Contrarily, the unsteady term (dD/dt) is mostly negative, contributing in the sense of vortex regions. The
viscous term contributes mostly negatively as well, with a slightly different behavior very near to the wall (y+ / 4),
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where it contributes positively. Consequently, λ2 departs from zero at the wall to a maximum value at y+ ≈ 5. After this
peak, it decreases to zero at y+ ≈ 12 and achieve a minimum close to y+ = 20. After this valley, λ2 tends to zero as it
approaches the channel centerline.

It is remarkable that λ2 is mostly dictated by the Hessian of the pressure in the vicinity of the wall and, away from the
wall, the value of λ2 basically equals the viscous term.

Regarding the viscoelastic cases (Figs. 1(b) and 1(c)), all terms follow similar trends comparing to the Newtonian
case, except for some important points. In particular, the unsteady term has the tendency to become positive within the
buffer layer (5 / y+ / 30) with increasing elasticity. More importantly, two general features are evident. With increasing
elasticity, the intensity of all terms decrease, and the maxima and minima occur further away with respect to the wall.
The first point is another evidence of the well-known weakening of vortices in drag-reducing flows. However, we also
highlight the weakening of strain-dominated regions (positive values). As far as the maxima and minima being shifted
away from the wall, this may be related to the thickening of the buffer layer in viscoelastic flows. In fact, the two major
theories on the drag reduction mechanism predicts this as a consequence of their explanations.

5. CONCLUSIONS

We evaluated the contribution of dynamic terms that contributes to the determination of vortices according to the
λ2-criterion Jeong and Hussain (1995). Following Jeong and Hussain (1995), the symmetric part of the gradient of the
momentum equation has been evaluated. Moreover, we include in this equation the contribution due to the presence of
polymers. Instantaneous fields of turbulent channel flow of Newtonian and viscoelastic fluids at Reτ0 = 1000 generated
by Thais et al. (2011, 2012) have been used for the analysis.

The present results suggests that the already known weakening of vortices in drag-reducing flows is not a direct effect
of the polymer stress. Instead, it seems that it is a consequence of nonlinear interactions between the polymer stress and
flow dynamics. Moreover, the weakening of vortices is also accompanied by a weakening of strain-dominated regions.
Finally, the viscoelastic analyzes provides some evidences of the thickening of the buffer layer, which is predicted by the
two major theories on the drag reduction phenomenon (Lumley, 1969; Tabor and de Gennes, 1986).

Finally, Jeong and Hussain (1995) relate the Q-criterion (Hunt et al., 1988) with the λ2-criterion by the following
equation

Q = −1

2
tr(D2 + W 2) . (11)

Therefore, the same methodology can be applied to the Q-criterion using Eq. (9) and is aimed as further work.
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